Can Satellite Precipitation Products Estimate Probable Maximum Precipitation: A Comparative Investigation with Gauge Data in the Dadu River Basin

نویسندگان

  • Yuan Yang
  • Guoqiang Tang
  • Xiaohui Lei
  • Yang Hong
  • Na Yang
چکیده

Probable Maximum Precipitation (PMP) is an essential prerequisite in designing dams, spillways, and reservoirs in order to minimize the risk of overtopping infrastructure collapse, especially under today’s changing climate. This study investigates conventional PMP estimation approach by using both scarce in-situ observations and mainstream satellite precipitation products in the Dadu River basin, where plenty of reservoirs and dams are being built. The satellite data include Climate Prediction Center (CPC) MORPHing algorithm (CMORPH), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), and Tropic Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42V7. The evaluation of satellite products shows that CMORPH and 3B42V7 agree well with gauge-based dataset for the period of 1998–2013 at both the grid and basin scales, also capturing the extreme precipitation events, with high Correlation Coefficients (CC) in terms of 0.68 and 0.71, respectively. Also, CMORPH and 3B42V7 show better performance for the magnitude and spatial distribution of 24-h PMP in such complex terrains. PERSIANN-CDR shows an overestimation in the upstream and an underestimation in the downstream. As among the first studies of satellite precipitation-based PMP estimation, this work sheds lights on the suitability of satellite precipitation in PMP estimation and could provide a reference for future extended spatially-distributed PMP estimation in vast ungauged regions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrological Assessment of Daily Satellite Precipitation Products over a Basin in Iran

In order to measure precipitation as the main variable for estimating the runoff and designing hydraulic structures, the satellite algorithm products that have the proper spatial and temporal coverage, can be used. In this study, at first, the daily streamflow simulation of Sarough-Cahy River from the Zarinehroud basin was conducted through the artificial neural network (ANN) and ground data of...

متن کامل

Sensitivity of Distributed Hydrologic Simulations to Ground and Satellite Based Rainfall Products

In this study, seven precipitation products (rain gauges, NEXRAD MPE, PERSIANN 0.25 degree, PERSIANN CCS-3hr, PERSIANN CCS-1hr, TRMM 3B42V7, and CMORPH) were used to force a physically-based distributed hydrologic model. The model was driven by these products to simulate the hydrologic response of a 1232 km watershed in the Guadalupe River basin, Texas. Storm events in 2007 were used to analyze...

متن کامل

ارزیابی داده‌های بارش زمینی، ماهواره GPM و MERRA (مطالعه موردی: حوضه آبریز کشف رود)

  In recent decades, satellite and model- based precipitation products has attracted attention of the scientists and researchers in hydrology and other disciplines. The purpose of this research is quantitative comparison of MERRA and GPM satellite precipitation products with ground station precipitation values as reference data in Kashafrud basin. The important point about these data is their ...

متن کامل

Multi-scale evaluation of high-resolution multi-sensor blended global precipitation products over the Yangtze River

In the present study, four high-resolution multi-sensor blended precipitation products, TRMM Multisatellite Precipitation Analysis (TMPA) research product (3B42 V7) and near real-time product (3B42 RT), Climate Prediction Center MORPHing technique (CMORPH) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), are evaluated over the Yangtze Ri...

متن کامل

Evaluation of Satellite-Based Precipitation Products from IMERG V04A and V03D, CMORPH and TMPA with Gauged Rainfall in Three Climatologic Zones in China

A critical evaluation of the newly released precipitation data set is very important for both the end users and data developers. Meanwhile, the evaluation may provide a benchmark for the product’s continued development and future improvement. To these ends, the four precipitation estimates including IMERG (the Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement) V04A,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2018